Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection

نویسندگان

  • Amalia Z. Berna
  • James S. McCarthy
  • Rosalind X. Wang
  • Kevin J. Saliba
  • Florence G. Bravo
  • Julie Cassells
  • Benjamin Padovan
  • Stephen C. Trowell
چکیده

Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

The ABO Blood Group System and Plasmodium Infection in Iran: A Comprehensive Study

Background: Geographical distribution of ABO blood groups affects by race, ethnicity, migration and some infectious agents, such as Plasmodium species. P. falciparum is the major causative agent of death in malaria that can affect ABO blood group distribution in different populations. Therefore, the objective of the current study was to determine the effect of p. falciparum on ABO blood group d...

متن کامل

Molecular Evidence on Changing Pattern of Mixed Plasmodium falciparum and P. vivax Infections during Year-Round Transmission of Malaria in Chahbahar, Iran

Mixed malaria infections, Plasmodium falciparum and P. vivax, are suspected to occur at a greater frequency than is detected by conventional light microscopy. In order to determine the year round pattern of transmission and the frequency of mixed infections in malaria endemic area, we carried out a prospective comparison of diagnosis by conventional light microscopy and nested PCR in Chahbahar ...

متن کامل

Clinical Pharmacology of the Antimalarial Artemisinin-Based Combination and other Artemisinins in Children

In 2010, there were estimated 219 million cases of malaria resulting in 666,000 deaths and two-thirds were children. Children are more vulnerable than adults to malaria parasites. In sub-Saharan African countries, maternal malaria is associated with up to 200,000 estimated infant deaths yearly. Malaria is caused by five Plasmodium parasites namely: Plasmodium falciparum, Plasmodium vivax, Plasm...

متن کامل

Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran

Abstract       Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2015